Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 873: 162410, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842594

RESUMO

Weeds reduce vineyard productivity and affect grape quality by competing with grapevines (Vitis vinifera L.) for water and nutrients. The increased banning of herbicides has prompted the evaluation of alternative soil management strategies. Cover cropping seems to be the best alternative for weed management. However, it may impact vine growth, grape yield, and quality. Quantitative studies on these changes are scarce. Our study aimed to investigate the combined effect of grass cover and water availability on vines of three cultivars, the white Chasselas and Petite Arvine and the red Pinot noir field-grown under identical climatic and pedological conditions and grafted onto the same rootstock. Soil management and irrigation experiments were performed during the 2020-2021 seasons. Two extreme soil management practices were established in the vineyard, based on 100 % bare soil (BS) by the application of herbicides with glufosinate or glyphosate as active ingredients and 100 % grass-covered soil (GS) by cover cropping with a mixture of plant species. Two water statuses were imposed by drip irrigation (DI) and no irrigation (NI). The level of vine-weed competition for water and nitrogen (N) was assessed in the vine, must, and wine solid residues (WSRs) by comparing measurements, i.e., the yeast assimilable N content, C/NWSR, carbon and N isotope ratios (δ13Cgrape-sugars, δ13CWSR, and δ15NWSR) among the different treatments (BS-DI, BS-NI, GS-DI, GS-NI). The increase in the δ13Cgrape-sugars and δ13CWSR values with increasing plant water deficit mimicked the observations in irrigation experiments on BS. The NWSR content and δ15NWSR values decreased with water stress and much more strongly in vines on GS. The dramatic N deficit in rainfed vines on GS could be alleviated with irrigation. The present study provides insights from chemical and stable isotope analyses into the potential impact of cover cropping in vineyards in the context of the banning of herbicides in a time of global water scarcity due to climate change.


Assuntos
Herbicidas , Vitis , Solo/química , Carbono , Nitrogênio , Isótopos , Açúcares
2.
Microbiol Spectr ; 10(6): e0251322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409146

RESUMO

The evolution of sequencing technology and multiplexing has rapidly expanded our ability to characterize fungal diversity in the environment. However, obtaining an unbiased assessment of the fungal community using ribosomal markers remains challenging. Longer amplicons were shown to improve taxonomic resolution and resolve ambiguities by reducing the risk of spurious operational taxonomic units. We examined the implications of barcoding strategies by amplifying and sequencing two ribosomal DNA fragments. We analyzed the performance of the full internal transcribed spacer (ITS) and a longer fragment including also a part of the 28S ribosomal subunit replicated on 60 grapevine trunk core samples. Grapevine trunks harbor highly diverse fungal communities with implications for disease development. Using identical handling, amplification, and sequencing procedures, we obtained higher sequencing depths for the shorter ITS amplicon. Despite the more limited access to polymorphism, the overall diversity in amplified sequence variants was higher for the shorter ITS amplicon. We detected no meaningful bias in the phylogenetic composition due to the amplicon choice across analyzed samples. Despite the increased resolution of the longer ITS-28S amplicon, the higher and more consistent yields of the shorter amplicons produced a clearer resolution of the fungal community of grapevine stem samples. Our study highlights that the choice of ribosomal amplicons should be carefully evaluated and adjusted according to specific goals. IMPORTANCE Surveying fungal communities is key to our understanding of ecological functions of diverse habitats. Fungal communities can inform about the resilience of agricultural ecosystems, risks to human health, and impacts of pathogens. Community compositions are typically analyzed using ribosomal DNA sequences. Due to technical limitations, most fungal community surveys were based on amplifying a short but highly variable fragment. Advances in sequencing technology enabled the use of longer fragments that can address some limitations of species identification. In this study, we examined the implications of choosing either a short or long ribosomal sequence fragment by replicating the analyses on 60 grapevine wood core samples. Using highly accurate long-read sequencing, we found that the shorter fragment produced substantially higher yields. The shorter fragment also revealed more sequence and species diversity. Our study highlights that the choice of ribosomal amplicons should be carefully evaluated and adjusted according to specific goals.


Assuntos
Micobioma , Vitis , DNA Fúngico/genética , DNA Ribossômico/genética , Ecossistema , Fungos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Micobioma/genética , Filogenia , Vitis/microbiologia
3.
Viruses ; 14(6)2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35746804

RESUMO

Grapevine leafroll disease (GLD) is one of the most economically damaging virus diseases in grapevine, with grapevine leafroll-associated virus 1 (GLRaV-1) and grapevine leafroll-associated virus 3 (GLRaV-3) as the main contributors. This study complements a previously published transcriptomic analysis and compared the impact of two different forms of GLD to a symptomless control treatment: a mildly symptomatic form infected with GLRaV-1 and a severe form with exceptionally early leafroll symptoms (up to six weeks before veraison) infected with GLRaV-1 and GLRaV-3. Vine physiology and fruit composition in 17-year-old Pinot noir vines were measured and a gradient of vigor, yield, and berry quality (sugar content and berry weight) was observed between treatments. Virome composition, confirmed by individual RT-PCR, was compared with biological indexing. Three divergent viromes were recovered, containing between four to seven viruses and two viroids. They included the first detection of grapevine asteroid mosaic-associated virus in Switzerland. This virus did not cause obvious symptoms on the indicators used in biological indexing. Moreover, the presence of grapevine virus B (GVB) did not cause the expected corky bark symptoms on the indicators, thus underlining the important limitations of the biological indexing. Transmission of GLRaV-3 alone or in combination with GVB by Planococcus comstocki mealybug did not reproduce the strong symptoms observed on the donor plant infected with a severe form of GLD. This result raises questions about the contribution of each virus to the symptomatology of the plant.


Assuntos
Closteroviridae , Vitis , Closteroviridae/genética , Flexiviridae , Doenças das Plantas
4.
Plant Physiol Biochem ; 163: 45-54, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33812226

RESUMO

We investigated the within- and between-leaf variability in the carbon and nitrogen isotope composition (δ13C and δ15N) and total nitrogen (TN) content in two grapevine cultivars (Vitis vinifera cv. Chasselas and Pinot noir) field-grown under rain-fed conditions. The within-leaf variability was studied in discs sampled from base-to-tip and left and right regions from the margin to midrib. The intra- and interplant variability was studied by comparing leaves at different positions along the shoot (basal, median, apical). In leaves from both cultivars, a decrease in δ13C from base to tip was observed, which is in line with an upward gradient of stomatal density and chlorophyll concentration. Less important, but still significant differences were observed between the right and left discs. The leaf TN and δ15N values differed between cultivars, showed smaller variations than the δ13C values, and no systematic spatial trends. The intraleaf variations in δ13C, δ15N, and TN suggest that stomatal behavior, CO2 fixation, chlorophyll concentrations, and the chemical composition of leaf components were heterogeneous in the leaves. At the canopy scale, the apical leaves had less 13C and more 15N and TN than the basal leaves, indicating differences in their photosynthetic capacity and remobilizations from old, senescing leaves to younger leaves. Overall, this study demonstrates patchiness in the δ13C and δ15N values of grapevine leaves and species-specificity of the nitrogen assimilation and 15N fractionation. These findings suggest that care must be taken not to overinterpret foliar δ13C and δ15N values in studies based on fragmented material as markers of physiological and biochemical responses to environmental factors.


Assuntos
Carbono , Nitrogênio , Isótopos de Carbono , Isótopos de Nitrogênio , Folhas de Planta
5.
Sci Total Environ ; 739: 140343, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758968

RESUMO

Changes in leaf carbon and nitrogen isotope composition (δ13C and δ15N values) and the accumulation of epicuticular lipids have been associated with plant responses to water stress. We investigated their potential use as indicators of early plant water deficit in two grapevine (Vitis vinifera L.) cultivars, Chasselas and Pinot noir, that were field-grown under well-watered and water-deficient conditions. We tested the hypothesis that the bulk δ13C and δ15N values and the concentrations of epicuticular fatty acids may change in leaves of similar age with the soil water availability. For this purpose, leaves were sampled at the same position in the canopy at different times (phenological stages) during the 2014 growing season. Bulk dry matter of young leaves from flowering to veraison had higher δ13C values, higher total nitrogen content, and lower δ15N values than old leaves. In both cultivars, δ15N values were strongly correlated with plant water deficiency, demonstrating their integration of the plant water stress response. δ13C values recorded the water deficiency only in those plants that had not received foliar organic fertilization. The soil water deficiency triggered the accumulation of C>26 fatty acids in the cuticular waxes. The compound-specific isotope analysis (CSIA) of fatty acids from old leaves showed an increase in δ13C among the C16-C22 chains, including stress signaling linoleic and linolenic acids. Our results provide evidence for leaf 13C-enrichment, 15N-depletion, and enhanced FA-chain elongation and epicuticular accumulation in the grapevine response to water stress. The leaf δ13C and δ15N values, and the concentration of epicuticular fatty acids can be used as reliable and sensitive indicators of plant water deficit even when the level of water stress is low to moderate. They could also be used, particularly the more cost-efficient δ13C and δ15N measurements, for periodic biogeochemical mapping of the plant water availability at the vineyard and regional scale.


Assuntos
Carbono , Nitrogênio , Isótopos de Carbono , Desidratação , Fazendas , Humanos , Lipídeos , Isótopos de Nitrogênio , Folhas de Planta , Água
6.
Funct Plant Biol ; 47(8): 769, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32631478

RESUMO

Nitrogen deficit affects both crop production and composition, particularly in crops requiring an optimal fruit N content for aroma development. The adaptation of cultural practices to improve N use efficiency (NUE) (i.e. N uptake, assimilation and partitioning) is a priority for the sustainable production of high-quality crops. A trial was set on potted grapevines (Vitis vinifera L. cv. Chasselas) to investigate the potential of crop limitation (via bunch thinning) to control plant NUE and ultimately fruit N composition at harvest. A large crop load gradient was imposed by bunch thinning (0.5-2.5 kg m-2) and N traceability in the plant was realised with an isotope-labelling method (10 atom % 15N foliar urea). The results indicate that the mobilisation of root reserves plays a major role in the balance of fruit N content. Fertiliser N uptake and assimilation appeared to be strongly stimulated by high-yielding conditions. Fertilisation largely contributed to fulfilling the high fruit N demand while limiting the mobilisation of root reserves under high yield conditions. Plants were able to modulate root N reserve mobilisation and fertiliser N uptake in function of the crop load, thus maintaining a uniform N concentration in fruits. However, the fruit free amino N profile was modified, which potentially altered the fruit aromas. These findings highlight the great capacity of plants to adapt their N metabolism to constraints, crop thinning in this case. This confirms the possibility of monitoring NUE by adapting cultural practices.

7.
Funct Plant Biol ; 47(8): 744-756, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32527367

RESUMO

Nitrogen deficit affects both crop production and composition, particularly in crops requiring an optimal fruit N content for aroma development. The adaptation of cultural practices to improve N use efficiency (NUE) (i.e. N uptake, assimilation and partitioning) is a priority for the sustainable production of high-quality crops. A trial was set on potted grapevines (Vitis vinifera L. cv. Chasselas) to investigate the potential of crop limitation (via bunch thinning) to control plant NUE and ultimately fruit N composition at harvest. A large crop load gradient was imposed by bunch thinning (0.5-2.5 kg m-2) and N traceability in the plant was realised with an isotope-labelling method (10 atom % 15N foliar urea). The results indicate that the mobilisation of root reserves plays a major role in the balance of fruit N content. Fertiliser N uptake and assimilation appeared to be strongly stimulated by high-yielding conditions. Fertilisation largely contributed to fulfilling the high fruit N demand while limiting the mobilisation of root reserves under high yield conditions. Plants were able to modulate root N reserve mobilisation and fertiliser N uptake in function of the crop load, thus maintaining a uniform N concentration in fruits. However, the fruit free amino N profile was modified, which potentially altered the fruit aromas. These findings highlight the great capacity of plants to adapt their N metabolism to constraints, crop thinning in this case. This confirms the possibility of monitoring NUE by adapting cultural practices.


Assuntos
Vitis , Produtos Agrícolas , Frutas , Nitrogênio , Odorantes
8.
Anal Bioanal Chem ; 411(10): 2031-2043, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30714082

RESUMO

Recently, we reported that the carbon isotope composition of the solid residues obtained by freeze-drying white and red wines (δ13CWSR) could be used for tracing the water status of the vines whose grapes were used to produce them. Here, we compare different methods using δ13C values of other wine components, particularly those of whole wine (δ13CWW) obtained by elemental analysis and isotope ratio mass spectrometry (EA/IRMS) and of wine ethanol (δ13CWEtOH) obtained by gas chromatography/combustion/IRMS (GC/C/IRMS), for their suitability to assess the vine water status. The studied wines were obtained from field-grown cultivars (Vitis vinifera L. cv. Chasselas, Petite Arvine, and Pinot noir) under different water treatments during the 2009-2014 seasons and were the same wines in which the δ13CWSR was measured previously. The EA/IRMS method for whole wine used two successive EA analytical cycles in each acquisition period to reduce the residence time of the sample capsules in the autosampler. The sample aliquots for the EA/IRMS and GC/C/IRMS analyses were optimized for peak-size differences less than 10% between the sample and reference gas. For all wine varieties, the δ13CWW and δ13CWEtOH values were linearly correlated with the predawn leaf water potential (Ψpd) and therefore serve as reliable indicators of vine water status, as do the δ13C values for must sugars and wine solid residues. The strongest negative correlations with Ψpd were for δ13Csugars (r = -0.94, n = 54) and δ13CWEtOH (r = -0.91) and were lower but still highly significant (p < 0.00001) for δ13CWW (r = -0.71) and δ13CWSR (r = -0.70). An evaluation of the advantages and drawbacks of the different methods is presented, showing that the δ13C analysis of wine ethanol by GC/C/IRMS is the most appropriate.


Assuntos
Etanol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Água/análise , Vinho/análise , Isótopos de Carbono/análise , Análise de Alimentos/métodos , Açúcares/análise , Vitis/química
9.
Sci Total Environ ; 635: 178-187, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660721

RESUMO

The grapevine is one of the most important edible fruit plants cultivated worldwide, and it is highly sensitive to changes in the soil water content. We studied the total carbon and nitrogen contents and stable isotope compositions (C/NWSR, δ13CWSR and δ15NWSR values) of the solid residues obtained by freeze-drying wines produced from two white grapevine cultivars (Vitis vinifera L. cv Chasselas and Petite Arvine) field grown under different soil water regimes while maintaining other climatic and ecopedological conditions identical. These experiments simulated the more frequent and extended climate change-induced periods of soil water shortage. The wines were from the 2009-2014 vintages, produced using the same vinification procedure. The plant water status, reflecting soil water availability, was assessed by the predawn leaf water potential (Ψpd), monitored in the field during the growing seasons. For both wine varieties, the δ13CWSR values are highly correlated with Ψpd values and record the soil water availability set by soil water holding capacity, rainfall and irrigation water supply. These relationships were the same as those observed for the carbon isotope composition of fruit sugars (i.e., must sugars) and plant water status. In Chasselas wines, the nitrogen content and δ15NWSR values decreased with soil water deficit, indicating control of the flux of soil-water soluble nutrients into plants by soil water availability. Such a correlation was not found for Petite Arvine, probably due to different N-metabolism processes in this genetically atypical cultivar. The results presented in this study confirm and generalize what was previously found for red wine (Pinot noir); the carbon isotope composition of wine solid residues is a reliable indicator of the soil and the plant water status and thus can be used to trace back local climatic conditions in the vineyard's region. In most wines (except Petite Arvine) the C/NWSR and δ15NWSR values are indicators of the origin of the nitrogen supplied to the plant's fruit (grape) that can be used to assess the N dynamics in the soil-water-plant system.

10.
Plant Dis ; 102(3): 651-655, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673492

RESUMO

Grapevine red blotch virus (GRBV) is a recently described virus that infects grapevine. Little information is available on the possible occurrence and distribution outside North America. Therefore, we surveyed commercial vineyards from the three major grape-growing regions in Switzerland to determine the presence or absence of GRBV. In total, 3,062 vines were analyzed by polymerase chain reaction. None of the vines tested positive for GRBV, suggesting the absence of GRBV from Swiss vineyards. We also investigated whether GRBV was present in 653 grapevine accessions in the Agroscope grapevine virus collection at Nyon, including dominantly Swiss (457) but also international accessions. Only six referential accessions were infected by GRBV, all originating from the United States, whereas all others from 10 European and 8 non-European origins tested negative. High-throughput sequencing analysis of Zinfandel A2V13, in the collection since 1985, confirmed close similarity of GRBV isolate Z_A2V13 to American isolates according to genomes deposited in GenBank. Because the Zinfandel A2V13 reference was also maintained grafted on the leafroll virus indicator Vitis vinifera 'Gamay', we evaluated the effect of GRBV on viticultural performance over a 3-year period. Our results showed clear detrimental effects of GRBV on grapevine physiology (vine vigor, leaf chlorophyll content, and gas exchange) and fruit quality. These findings underscore the importance of implementation of GRBV testing worldwide in certification and quarantine programs to prevent the dissemination of this virus.


Assuntos
Geminiviridae/fisiologia , Doenças das Plantas/virologia , Vitis/virologia , Frutas/virologia , Folhas de Planta/virologia , Suíça , Vitis/fisiologia
11.
J Chromatogr A ; 1517: 142-155, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851526

RESUMO

This paper describes a novel approach to reassess the water status in vineyards based on compound-specific isotope analysis (CSIA) of wine volatile organic compounds (δ13CVOC/VPDB) and bulk carbon and nitrogen isotopes, and the C/N molar ratios of the wine solid residues (δ13CSR/VPDB, δ15NSR/Air-N2). These analyses link gas chromatography/combustion and elemental analysis to isotope ratio mass spectrometry (GC/C/IRMS, EA/IRMS). Field-grown cultivars of Pinot Noir grapevines were exposed during six growing seasons (2009-2014) to controlled soil water availability, while maintaining identical the other environmental variables and agricultural techniques. Wines were produced from the grapes by the same oenological protocol. This permitted for the assessment of the effects in the biochemistry of wines solely induced by the changes in the plant-soil water status. This mimicked the more recurrent and prolonged periods of soil water deficiency due to climate changes. Water stress in grapevine was assessed by the measurement of the predawn leaf water potential (Ψpd) and the stable carbon isotope composition of the berry sugars during harvest (must sugars). For quantitation purposes and the normalization of the measured stable carbon isotope ratios of the VOCs, the wine samples were spiked with three standard compounds with known concentration and δ13CVPDB values. VOCs were extracted by liquid-liquid extraction and analyzed by gas chromatography/flame ionization detection (GC/FID), gas chromatography/mass spectrometry (GC/MS), and GC/C/IRMS. δ13C values were obtained for eighteen VOCs. The solid residues were obtained by freeze-drying wine aliquots and were analyzed for their C and N content and isotope composition by EA/IRMS. All the isotopic ratios (δ13CSR, δ15NSR, δ13CVOC) are highly correlated with the Ψpd values, indicating that the proposed gas chromatography and isotope ratio mass spectrometry approach is a useful tool to assess the changes in the water status of grapevine cultivars in different terroirs. The combined analytical approach was used for the first time to complement the assessment of soil water availability effects on the grapevine. The δ13C values of the volatile compounds helped confirm (or establish) their main source(s) and biosynthetic pathway(s). Importantly, we also show for the first time that the combination of C/N and δ15N values of freeze-dried wines have an unexplored potential for the study of nitrogen dynamics in soil/grape/wine systems.


Assuntos
Agricultura/métodos , Isótopos de Carbono/análise , Fazendas , Cromatografia Gasosa-Espectrometria de Massas , Água/química , Vinho/análise , Extração Líquido-Líquido , Isótopos de Nitrogênio/análise , Folhas de Planta/química , Solo/química , Vitis/química , Compostos Orgânicos Voláteis/análise , Água/normas
12.
Funct Plant Biol ; 44(7): 679-693, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32480598

RESUMO

Hydraulic conductance and water transport in plants may be affected by environmental factors, which in turn regulate leaf gas exchange, plant growth and yield. In this study, we assessed the combined effects of radiation and water regimes on leaf stomatal conductance (gs), petiole specific hydraulic conductivity (Kpetiole) and anatomy (vessel number and size); and leaf aquaporin gene expression of field-grown grapevines at the Agroscope Research Station (Leytron, Switzerland). Chasselas vines were subjected to two radiation (sun and shade) levels combined with two water (irrigated and water-stressed) regimes. The sun and shade leaves received ~61.2 and 1.48molm-2day-1 of photosynthetically active radiation, respectively, during a clear-sky day. The irrigated vines were watered weekly from bloom to veraison whereas the water-stressed vines did not receive any irrigation during the season. Water stress reduced gs and Kpetiole relative to irrigated vines throughout the season. The petioles from water-stressed vines showed fewer large-sized vessels than those from irrigated vines. The shaded leaves from the irrigated vines exhibited a higher Kpetiole than the sun leaves at the end of the season, which was partially explained by a higher number of vessels per petiole and possibly by the upregulation of some of the aquaporins measured in the leaf. These results suggest that not only plant water status but also the light environment at the leaf level affected leaf and petiole hydraulics.

13.
Funct Plant Biol ; 43(9): 827-837, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32480507

RESUMO

Recent climatic trends of higher average temperatures and erratic precipitation patterns are resulting in decreased soil moisture availability and, consequently, periods of water stress. We studied the effects of seasonal water stress on grapevine (Vitis vinifera L. cv. Riesling grafted onto 101-14 (Vitis riparia Michx.×Vitis rupestris Scheele) rootstock) shoot growth, leaf gas exchange, xylem morphology and hydraulic performance in the cool-climate Finger Lakes region of New York. A plastic rain exclusion tarp was installed on the vineyard floor to create a soil moisture deficit and consequently induce vine water stress. Weekly measurements of predawn leaf and midday stem water potentials (Ψmd) were made, and two contrasting shoot length classes, long (length >2.0m) and short (length <1.0m), were monitored. Growth of both long and short shoots was positively correlated with Ψmd but no difference in water status was found between the two. Compared with rain-fed vines, water-stressed vines had lower photosynthesis and stomatal conductance later in the season when Ψmd dropped below -1.2MPa. Long shoots had three-fold higher xylem-specific hydraulic conductivity values than short shoots. Long shoots experiencing water stress were less vulnerable to xylem cavitation than shorter shoots even though they had more large-diameter vessels. The lower vulnerability to cavitation of long shoots may be attributed to less xylem intervessel pitting being found in long shoots, consistent with the air-seeding hypothesis, and suggests that a hydraulic advantage enables them to maintain superior growth and productivity under water stress.

14.
Plant Cell Environ ; 39(4): 860-70, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26574193

RESUMO

Plants can be highly segmented organisms with an independently redundant design of organs. In the context of plant hydraulics, leaves may be less embolism resistant than stems, allowing hydraulic failure to be restricted to distal organs that can be readily replaced. We quantified drought-induced embolism in needles and stems of Pinus pinaster using high-resolution computed tomography (HRCT). HRCT observations of needles were compared with the rehydration kinetics method to estimate the contribution of extra-xylary pathways to declining hydraulic conductance. High-resolution computed tomography images indicated that the pressure inducing 50% of embolized tracheids was similar between needle and stem xylem (P50 needle xylem = -3.62 MPa, P50 stem xylem = -3.88 MPa). Tracheids in both organs showed no difference in torus overlap of bordered pits. However, estimations of the pressure inducing 50% loss of hydraulic conductance at the whole needle level by the rehydration kinetics method were significantly higher (P50 needle = -1.71 MPa) than P50 needle xylem derived from HRCT. The vulnerability segmentation hypothesis appears to be valid only when considering hydraulic failure at the entire needle level, including extra-xylary pathways. Our findings suggest that native embolism in needles is limited and highlight the importance of imaging techniques for vulnerability curves.


Assuntos
Pinus/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Tomografia Computadorizada por Raios X/métodos , Xilema/fisiologia , Desidratação , Caules de Planta/anatomia & histologia , Árvores/fisiologia , Xilema/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...